METROLOGY for DRUG DELIVERY

Gravimetric calibration method for microflow

Anders Niemann (Danish Technological Institute)

Event: Workshop on microflow calibration methods (online) Date: 18 November 2020

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Microflow sizes

Flow rates from 100 nL/min and down to 15 nL/min => 6 mL/h to 0.9 μL/h

Flow rate **100 nL/min**, time to get the droplet: **50 min**

Flow rate **15 nL/min**, time to get the droplet: **5.6 hours**

Gravimetric calibration method

Steady flow:

 $Q_{vol} = \frac{V_{delivered}}{\Delta time}$

 $V_{delivered} = V_{finish} - V_{start}$

 $\Delta time = t_{finish} - t_{start}$

 $V = \frac{mass}{density}$ **Density** is a function of temperature and is different from fluid to fluid

- The gravimetric method relies on weighing the mass of the working fluid delivered by or flowed through the DUT (Device Under Test) for a set time.
 - Steady flow (down to ≈ 15 nL/min)
 - Dynamic flow (down to ≈ 83 nL/min)

Parameters influencing the measurements

- Evaporation
- Water degassing
- Priming the tubing and the flow meter under test
- Flow rate stability
- Timing/measurement of time
- Temperature stability
- Buoyancy correction of the delivered liquid
- Buoyancy correction due to the immersed tube into the liquid
- Jet force out of the immersion tube
- Stick/slip of needle and liquid
- Drift and Linearity of the balance

Evaporation traps

Evaporation rate from uncovered beaker is in the range of 40 nL/min which is more than the double of the lowest target flowrate of 15 nL/min.

 \rightarrow dependent on ambient condition as humidity, temperature etc.

→ With oil cover it can be lowered to 2-3 nL/min (must be adjusted for)

MFC = Mass Flow Controller

Flow and balance stability

8

Weighing - stability

- Stable support minimize vibration
 - (Granite table on flex support –rubber feet)
- Temperature stability
- Shielding against convection
- Avoid static electricity

Timing

- Traceability
- Steady flow

•
$$Q_{v} = \frac{\Delta V}{\Delta t} = \frac{\Delta (m/\rho)}{\Delta t}$$

- Example:
 - $\Delta t = 100 \text{ s}$
 - $u_t = 0.1 \text{ s}$
 - $\Rightarrow \frac{u_t}{\Delta t} = 0.1 \%$
- Dynamic flow profile

•
$$dQ_v = \frac{d(m/\rho)}{dt}$$

Data acquistion and timestamping

Archimedes' principle

© 2012 Encyclopædia Britannica, Inc.

- Buoyancy of the delivered liquid

- Immersion of tube into the liquid

It's only necessary to calculate buoyancy corrections for $\Delta mass$

 $F_{total} = F_{gravity} + F_{needle} - F_{buoyancy}$

- Immersion of tube into the liquid

Temperature stability I

Effects of changing temperature:

- Weighing/balance
- Flow-meter reading
- Mass flow vs. Volume flow
- Flow generated by expansion

Flow generated by expansion

- Example: 1 m SS tube, ID = 1 mm
- Temperature: 23 °C \rightarrow 24 °C
 - Water: $\Delta V = 121$ nl
 - Tube: $\Delta V = -12$ nl
 - Sum: $\Delta V = 109$ nl
 - If $\Delta t = 6 \min \rightarrow \text{flow} \approx 17 \text{ nL/min}$

Temperature stability II

(before insulation)

 $\leftarrow \rightarrow$

(after insulation)

Temperature stability III

Temperature stability IV:

- What can we do?

- ✓ Stabilize lab temperature
 ✓ Large heat capacity
 ✓ Heat conducting shield (→ isotherm)
 ✓ Isolating screen
- Short tubes with small ID (Inner Diameter)
- Stabilization of setup by water cooling/heating

Displacement by needle

Check: Weight vs needle height

9.04

9.038

No.

Emptying the beaker I: - What do we do when the beaker is full?

• Option 1: Replace with a new

- Manual process
- Thermal pertubation
- in practice: only small flows
- Option 2: Pump out
 - Automatic process
 - Thermal steady state
 - Increased flow rate

 $DTI \rightarrow \Delta m \approx 4 \ g \Rightarrow Flow_{max} \approx 1 \ ml/min$

Emptying the beaker II: - Example of beaker pumping system

- Siphon
- Control: 6-port valve
- Control signal: Weight
 - 9.5 g \rightarrow Empty
 - 5.5 g \rightarrow Fill

Alternative: Insert separate needle / syringe (-pump)

Example of setup (DTI)

Project Team

THANK YOU

