METROLOGY for DRUG DELIVERY

μ -PIV of ultra low flows using holography

Kerstin Thiemann (Hahn Schickard e.V.)

Workshop 18.11.2020

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Flow visualization methods

- Non-intrusive optical method of flow visualization
- Used to obtain instantaneous velocity measurements

Particle tracer methods

- Particle tracking velocimetry (PTV)
 - Low particle density
 - Measures velocity at a point
 - Path of a single particle is traced
- <u>Particle imaging velocimetry</u> (PIV)
 - Medium particle density
 - > 2D or 3D velocity vector fields are produced
 - Cross-correlation is used
- Laser speckle velocimetry (LSV)
 - High particle density
 - Generated speckle is traced

M. Raffel "Particle Image Velocimetry: A Practical Guide" Springer 2018

Particle Imaging Velocimetry (PIV)

Principle

- Developed by Ludwig Prandtl early 20th century
- Setup:
 - Optics for illumination
 - Channel
 - Imaging optics
 - Algorithm
- Particles are seeded in fluid
 - Particles are assumed to flow the flow dynamics
 - High particle density -> correlation
- Flow is illuminates
- Motion of particles are used to calculate the fluid behavior

M. Raffel "Particle Image Velocimetry: A Practical Guide" Springer 2018

PIV – Current application

https://www.youtube.com/watch?v=WbW6r8kIOsg

Holography – Lensless imaging

Holography

- Invented by Gabor (1948)
- "Science of making holograms"
- Hologram = photographic recording of a light field
- Light field can be reconstructed three dimensional
- \rightarrow Recording and reconstruction of optical waves
- Set up is simple and lensless
- Basic components:
 - Light source: LED, Laser,...
 - > Sample
 - Imaging Sensor: CMOS chip, CCD chip,...

Holography – Introduction

Recording

- Object and reference wave form interference pattern
- Interference pattern contains information about the amplitude and phase of the incoming wave

Object

(b) Reconstruction

Saleh et al. Fundamentals of Photonics. John Wiley & Sons, 2013.

Reconstruction

- Re-illuminating the hologram (optically)
- Fresnel-Kirchhoff integral (numerically)

Holography – Introduction

Original images of the work of Gabor in 1948

Dennis Gábor. Nature, 1948.

MĒDD II

Druametrology.com

Holography – Current research

Imaging of sperm

(head 5 x 3 μ m, tail 50 μ m)

(iv)

Raw lens-free holograms

Holographic reconstruction

Super-resolved

lens-free

holograms

Alon Greenbaum, et al. *Nature methods*, 2012.

True 3D reconstruction

Jasleen Birdi, et al. Jphys Photonics, 2020.

Holography – Current research

Imaging of sperm

(head 5 x 3 μ m, tail 50 μ m)

(iv)

Raw lens-free holograms

Holographic reconstruction

Super-resolved

lens-free

holograms

Alon Greenbaum, et al. Nature methods, 2012.

True 3D reconstruction

Jasleen Birdi, et al. Jphys Photonics, 2020.

9

Holography – Setup

Desired flow range:

5 – 100 nL/min

- neMESYS pump (cetoni GmbH) Flowrates > 1.1 nL/min
- Light source
 - ≻ LED
- Wavelength: 455 nm Power: 549 mW
- \succ Pinhole
 - Diameter: 50 +/- 3 μm
- Sample carrier
 - Custom made channel: 25 x 0.6 x 0.1 mm
- Imaging Sensor (CMOS) -➤ UI-1492LE
 - Optical area: 6.413 x 4.589 mm Pixel size: 1.67 µm Frame rate: 3.2 fps

Holography – Custom made channel

- Material: PMMA
- Double inlet system
 - Creates sheath flow
 - One inlet for heavy water, one for water seeded with particles
- Inlets contain UNF threads for Lure connectors
- Channel
 - ➤ Width: 600 µm
 - > Two different channel heights

Version 1: 100 μm

Version 2: 50 µm

- Channel is milled and needs to be polished
- Channel is sealed with 3M foil

Double inlet system to create sheeth flow

Holography – Custom made channel

- Material: PMMA
- Double inlet system
 - Creates sheath flow
 - One inlet for heavy water, one for water seeded with particles
- Inlets contain UNF threads for Lure connectors
- Channel
 - ≻ Width: 600 µm
 - Two different channel heights

Version 1: 100 µm

Version 2: 50 μm

- Channel is milled and needs to be polished
- Channel is sealed with 3M foil

200 um After polishing

*Images acquired with microscope

200 µm

After milling - without polishing

Holography – Acquired hologram

- Flow is generated via Hydrostatic pressure
 Flow rate ~ 400 nL/min
- Channel characteristics:
 - ≻ Height: 100 µm
 - ≻ Width: 600 µm
 - Milling patterns are polished away
 - Sealed with 3M foil
- Channel is filled with water and <u>seeded</u> with 10 µm PPS particles
- Small black particles outside of channel are dust/dirt

Holography – Reconstructed image

- Flow is generated via Hydrostatic pressure
 Flow rate ~ 400 nL/min
- Channel characteristics:
 - ≻ Height: 100 µm
 - ➤ Width: 600 µm
 - Milling patterns are polished away
 - Sealed with 3M foil
- Channel is filled with water and seeded with 10 µm PPS particles
- Image is <u>reconstructed using the Holopy</u> <u>package for python</u>
- <u>Background subtraction</u> removes irrelevant particles

Holography – PIV preparation

- Flow is generated via Hydrostatic pressure
 Flow rate ~ 400 nL/min
- Channel characteristics:
 - ≻ Height: 100 µm
 - ≻ Width: 600 µm
 - Milling patterns are polished away
 - Sealed with 3M foil
- Channel is filled with water and seeded with 10 µm PPS particles
- Image is reconstructed using the Holopy package for python
- Background subtraction removes irrelevant particles
- <u>Threshold filter</u> provides an almost binary image

PIV

- Generated Flow ~ 400 nL/min
- Channel characteristics:
 - ≻ Height: 100 µm
 - \succ Width: 600 μ m
- Channel is filled with water and <u>seeded</u> with 10 µm PPS particles
- PIV is performed using the <u>OpenPiv</u> package for python
- An interrogation window of 32 px is used
 - ➤ Too few particles
 - Only two images in comparison, not a batch process

PIV – Result

- Generated Flow +/- 400 nL/min
- Channel characteristics:
 - ≻ Height: 100 µm
 - ≻ Width: 600 µm
- Channel is filled with water and <u>seeded</u> with 10 µm PPS particles
- PIV is performed using the <u>OpenPiv</u> package for python
- An interrogation window of 32 px is used
 - ➤ Too few particles
 - Only two images in comparison, not a batch process
 - > Av. measured flow rate ~ 460 nL/min

PIV–Aim

*Ibidi Chip – Flow rate: ~ 275 nL/min

Interrogation window = 64px

18

PIV – uncertainty budget: Concept

- Puropse: identify all uncertainties and conclude a summed total error that can be expected
- System: Channels featuring rectangular crosssection

$$Q_{vol} = v * a * b = \frac{x}{t} * a * b$$

 Particles are imaged with camera system featuring optical magnification M

$$Q_{vol} = v * a * b = \frac{1}{M} * \frac{x}{t} * a * b$$

PIV – uncertainty budget: Neglectable influences ME

 Neglectable sources of error change the true position of particles by a margin that is far below resolution limit

$$Q_{vol} = v * a * b = \underbrace{\frac{x}{t}}_{x} * a * b$$

- Neglectable error sources originate mainly from position or time inaccuracies
 - Brownian motion
 - Time stamp inaccuracies of recorded images
 - Peak locking (for particles smaller than pixel size)
 - Motion blur due to long exposure times

PIV – uncertainty budget: Main influences

- Main influencing error sources
 - Fabrication error of micro channel
 - \pm 5 μm estimated for a and b
 - Angular deviation of camera and substrate from normal (90°)

Maximum error amounts to $\pm 2 \ \mu m$ in x

Total error calculation of independent errors

$$\frac{\Delta Q}{Q} = \sqrt{\left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta b}{b}\right)^2}$$

$$= \sqrt{\left(\frac{2\ \mu m}{x}\right)^2 + \left(\frac{5\ \mu m}{a}\right)^2 + \left(\frac{5\ \mu m}{b}\right)^2}$$

$$\Delta Q = Q * \sqrt{\left(\frac{2\,\mu m}{x}\right)^2 + \left(\frac{5\,\mu m}{a}\right)^2 + \left(\frac{5\,\mu m}{b}\right)^2}$$

PIV – uncertainty budget: Results

- Fabrication error of micro channel
 - > ± 5 µm estimated for *a* and *b*
 - ≻ *b* = 600 μm
 - a = 100 μm or 50 μm
- Angular deviation of camera and substrate from normal (90°)
 - > Maximum error amounts to $\pm 2 \mu m$ in x
 - > $x = 600 \, \mu \text{m} \rightarrow \text{FOV}$
- Desired flow rate:
 > Q = 5 100 nL/min

Total error calculation of independent errors

$$\Delta Q = Q * \sqrt{\left(\frac{2\ \mu m}{x}\right)^2 + \left(\frac{5\ \mu m}{a}\right)^2 + \left(\frac{5\ \mu m}{b}\right)^2}$$

Table: ΔQ for different flow rates at different channel heights *a*

Flow rate (Q) in nL/min	<i>a</i> = 100 μm	<i>a</i> = 50 μm
460	23.367	46.185
400	20.319	40.161
275	13.969	27.611
100	5.079	10.040
10	0.508	1.004
5	0.254	0.502

~5 % error

~10 % error

Conclusion and Outlook

Conclusion

- Digital in-line Holography setup is build
- Holograms with traced particles are recoded
- Reconstruction is done via Holopy
- PIV is done via OpenPIV
- Flows in the range of 400 nL/min are evaluated
- With the larger channels an error of 5 % is achieved

Outlook

- Flow rate will be further reduced with the neMESYS pump (cetoni GmbH)
 To achieve 5 100 nL/min
- Realize sheath flow due to custom made channels
- PIV will be advanced to a batch process

THANK YOU

www.drugmetrology.com

Project Team

25