METROLOGY for DRUG DELIVERY

Displacement methods

Hugo Bissig (METAS), Elsa Batista (IPQ), Oliver Büker (RISE)

Workshop on microflow calibration methods 18.11.2020

Displacement methods

Other expression for Piston Prover / Syringe pump to generate flow

METAS

IPQ

RISE

Piston Prover

Model function

Volume flow rate = speed \cdot *cross section* \cdot *f*_{stabilisation motion} \cdot *f*_{heating effects}

$$Q = \frac{dx}{dt} \cdot \pi r^2 \cdot f_{stabilisation\ motion} \cdot f_{heating\ effects}$$

Uncertainty components

- Travel distance d from linear measuring system or from motor encoder signal
- Time measurement
- Inner radius of the piston and ist variation over the length of the measuring distance
- Instability of the linear motion
- Repeatability
- Leakage of the sealing
- Heating effect due to the motion of the plunger
- Stability of temperature gradient along tubing inducing virtual flow

How to determine the speed of the piston plunger?

Get the position as a function of time

What are the options?

- Linear Measuring system calibrated by Interferometry
- Motor Encoder Signal calibrated by Interferometry
- Interferometer directly to get position vs time

IPO,

An interferometer is any optical arrangement in which two or more light waves are caused to interfere.

Position of the mirror

An interferometer determines distances in multiples of laser wavelength

Uncertainty contributions from linear motion:

- Abbé offsets such as pitch yaw and roll
- linear and angular error

Interferometry

Mirror plugged on the plunger without any other signal from the movement

Calibration of the position of the linear stage with the interferometer:

- Signal from Motor-Encoder
- Signal from Linear Measuring System

Mirror at the plunger position in the axis of the motion

Cross section of the piston

Current methods for the calibration: μ-CMM (tactile length measurement)

μ -CT (radiation method)

Cross section of the piston

μ -CT (radiation method)

Stabilisation of the motion

Contributions to be characterized

- Influence of the spindle pitch and rotation
- Influence of the gear between the motor and the spindle

(motor encoder signal vs real motion)

Effects of heating

Contributions to be characterized

- Heating from the plunger motion, if present
- Heating from the ambient conditions, if not very stable conditions
- Creating virtual flow at these very small flow rates due to the tubing volume and temperature and temperature gradient variations (needs to be stabilized very good)

Validation of displacement method

Options for validation of the displacement method:

- Comparison with gravimetric method
- Comparison with interferometer method
- Comparison with optical methods

Piston prover vs gravimetric method

Piston prover vs gravimetric & interferometer method

- o Displacement method has main uncertainty contributions from the inner diameter and the virtual flow rate
- Gravimetric method has main uncertainty contributions from evaporation rate and instabilities in the water collection technique

THANK YOU

+41 58 387 09 15

www.drugmetrology.com

